All News

pavel 70s.jpg

Pavel Jandera spoke to Frantisek Foret about building his own liquid chromatograph, the birth of “modern” high performance liquid chromatography (HPLC), the importance of exploring (and understanding) earlier research papers, current trends in contemporary chromatography, and his inspiring advice for aspiring chromatographers.

figure 6.jpg

Fluorinated stationary phases, especially those including a pentafluorophenyl (PFP) moiety, have become popular alternatives to the more traditional alkyl (C8 and C18) phases. Many modern column lines have, in fact, been initially introduced with the standard C18 and a PFP phase because of their orthogonality. In this instalment, the differences between alkyl phases and PFP phases are discussed in terms of fundamental interactions. The origin of the interactions is also interpreted to better understand how analysts can use and control them to develop effective and rugged analytical methods.

Ultrahigh-pressure size-exclusion chromatography (UHPSEC) can potentially offer a new direction and overcome some of the disadvantages (for example, limited resolution and long analysis time) associated with conventional SEC analysis. UHPSEC is based on using sub-3-µm silica-organic hybrid particles under elevated pressures (often above 400 bar) to improve the separation efficiency and increase analysis speed. In spite of the benefits promised by the chromatographic theory, there are some uncertainties that may limit the proliferation of UHPSEC in polymer analysis. As a result of possible issues associated with the use of a different stationary phase - including secondary interactions and polymer degradation - it is unclear whether UHPSEC will provide results comparable to those of traditional SEC methods. In this article, the advantages and challenges of UHPSEC for the analysis of different engineering thermoplastics are discussed, as well as a comparison of results obtained with UHPSEC and conventional SEC.

Hernan Cortes 2.jpg

Hernan Cortes

Mark Schure spoke to LCGC Europe’s Lifetime Achievement Award winner, Hernan Cortes, about his career with Dow Chemical, multidimensional chromatography, the evolution of mass spectrometry (MS), and the direction that liquid chromatography (LC) is taking.

figure 11452612196207.jpg

Thermal desorption sampling often provides a means for bringing otherwise intractable samples to a gas chromatography (GC) column for separation and detection. In this instalment, John Hinshaw describes the principles of thermal desorption sampling in relationship to other analysis techniques for volatile solutes.

figure 11452613960392.jpg

Cloud-point extraction (CPE) manipulates temperature and surfactant concentration to move aqueous solutes into a micelle phase for separation. Although CPE has been around for some time, it is still considered an emerging technique. Much of the development, and most applications, of CPE have dealt with extraction and preconcentration of inorganic solutes. More recently, attention has turned to the use of CPE in the isolation of organic solutes. This month, we review how CPE works and focus on applications for extracting organics.

table 1.jpg

Data integrity issues are changing the way that we should be undertaking computerized system validation (CSV) of our chromatography data systems (CDSs). Do you understand what is required in the brave new world of CSV?

The selectivity of different combinations of organic modifiers, pH, and types of reversed-phase liquid chromatography (LC) materials has been characterized using Tanaka column characterization, linear solvent energy relationships (LSER), and selectivity correlations. The three characterization techniques highlighted the potential complementary selectivity of these phases and conditions as well as the type and dominancy of some of the retention mechanisms involved. Subsequently, selectivity differences were proven to be valid in the practical separation of acids, bases, and neutral analytes. This paper aims to assist chromatographers in producing highly efficiency method development strategies for reversed-phase LC separations in a relatively short time frame.

1iTunes.png

Since their beginnings in 1986, UCT has evolved into a major competitor in the field of silica based solid phase extraction technology. The first to pioneer commercially available ‘mixed-mode’ SPE products, 30 years later UCT is still optimizing sample analysis for forensic, pharmaceutical, clinical, environmental and agricultural laboratories. Michael J. Telepchak, founder and CEO UCT, Inc., has laid the foundation for this powerful technology and has truly served as a catalyst for its transformation from a novel technique to an industry gold standard. From fundamental chemistry to manufacturing and business development, he has bared witness to all facets of the evolution of solid phase extraction and will speak on the monumental impact it has made on the scientific community.

Since their beginnings in 1986, UCT has evolved into a major competitor in the field of silica based solid phase extraction technology. The first to pioneer commercially available ‘mixed-mode’ SPE products, 30 years later UCT is still optimizing sample analysis for forensic, pharmaceutical, clinical, environmental and agricultural laboratories. Michael J. Telepchak, founder and CEO UCT, Inc., has laid the foundation for this powerful technology and has truly served as a catalyst for its transformation from a novel technique to an industry gold standard. From fundamental chemistry to manufacturing and business development, he has bared witness to all facets of the evolution of solid phase extraction and will speak on the monumental impact it has made on the scientific community.

The use of ion-exchange sorbents for the preconcentration, separation and determination of metal ions is well established in the literature. Selection of an appropriate sorbent ensures both high efficiency in metal chelating while minimizing the mass of sorbent required for a particular analytical task. A high efficiency sorbent means that a smaller bed mass may be used thereby reducing the quantity of solvent required for elution yielding greater analytical sensitivity.

Modulation.jpg

New research into flow modulation methods in valve-based two-dimensional gas chromatography (GC×GC) has produced an effective alternative to traditional pulse modulation.1 Described as “pattern modulation”, this new method increases effluent to the secondary column with flow rates compatible with most chromatographs and spectrometers.

figure 1.jpg

The inherent sensitivity and selectivity of time-of-flight mass spectrometry (TOF-MS) can be augmented by soft electron ionization (EI) to provide ultratrace-level quantitation of organotins in complex environmental extracts. These organotin species are a focus of current concern as environmental contaminants, but analysis using conventional 70 eV ionization energies is made difficult by their propensity to undergo extensive fragmentation. The use of soft EI helps to solve this problem by producing simplified spectra with enhanced diagnostic ions.