All News

figure 1 L1567441775532.png

Direct coupling of ion-exchange separations to mass spectrometric (MS) detection is increasingly being used for analyses of molecules ranging from organic acids to proteins. These approaches leverage both the exquisite selectivity of the ion-exchange mode for charge-based separation, and the tremendous power of mass spectrometry for identification of unknowns and trace-level quantitation.

figrue 2 L.png

This instalment is the first of a series of four white papers on high performance liquid chromatography (HPLC) modules (pump, autosampler, UV detector, and chromatography data system) to be published in 2019. This instalment provides an overview for analytical-scale HPLC pumps, including their requirements, modern designs, operating principles, trends, and best practices for trouble-free operation.

Figure 1 L.png

A biennial meeting jointly organized by the Environmental Chemistry Group, Separation Sciences Group, and the Water Science Forum, and discussing the latest advances in the analysis of complex environmental matrices, is now in its eighth year. The most recent iteration of the event occurred on Friday 22 February 2019 in the Science Suite, Royal Society of Chemistry, Burlington House, in London, UK. This meeting review offers an overview of what is happening in the industry.

Book Review.jpg

R.D. McDowall has written an excellent book on data integrity and data governance. Those who need to understand what this is should read the book and follow his advice. He has included both what the regulations and regulators say and what we need to do to be in compliance. This is a scalable approach with enhancements for larger items and shortcuts for smaller items, with numerous examples throughout the book.

Equation 11562859619515.png

This instalment of “GC Connections” dives into temperature programming. First, the differences in peak widths and retention times between temperature programmed and isothermal chromatograms are examined. Why are all the peaks so sharp in temperature programmed GC, yet they get broader (and shorter) in isothermal GC? Next, we explore some early ideas about temperature programming and peak broadening that explain why the peaks are so sharp in temperature-programmed GC, and why the peak spacing is different from isothermal GC. Finally, we examine an important consequence of our ability to program temperature: the need for temperature programming in splitless and other injections that use “solvent effects” and other peak focusing mechanisms. These points are illustrated using several historical figures and chromatograms from the early days of GC.

LCGC1_i1.gif

In the pharmaceutical industry, the use of mass spectrometry in high-throughput experimentation (HTE) has increased, thanks to the technique’s speed, sensitivity, and selectivity. We systematically evaluate the applicability of multiple MS techniques for different types of HTE samples and purposes, reviewing the pros and cons, and provide practical recommendations, Illustrated by application case studies.

LCGC2_i1.jpg

The development of analytical instrumentation for harsh terrestrial environments and outer planet space exploration exponentially increases instrument requirements-for features such as robustness, autonomous operation, and speed-and poses unique system integration challenges. Here, we explore the use of laser thermal desorption coupled to comprehensive two-dimensional gas chromatography (LTD-GC×GC) for use with a compact, high-resolution mass spectrometer for challenging applications.