All News

When I want to hear some humorous stories, there are few friends in the instrument manufacturing and sales business I can contact. If I ask them about their recent experiences with the cannabis industry, their stories will cover topics ranging from instruments purchased using duffel bags of cash (cue images of large men in suits and sunglasses packing heat) to recent college graduates who cleared $25 million in their first year of business selling cannabis butter (cue images of large men at breakfast laughing uncontrollably).

 For 32 years, LCGC has been the gold standard relied upon by chromatographers for unbiased, nuts-and-bolts technical information with a practical focus. LCGC’s columns and peer-reviewed articles continue to bring readers practical technical advice from respected experts in liquid and gas chromatography, including hyphenated techniques; capillary electrophoresis; supercritical fluid chromatography; and more. LCGC is indexed in the Web of Science, Journal Citation Reports, and EBSCOhost. Subscribe to LCGC:

figure 1 L.png

Traditional extraction methods for food samples, such as liquid–liquid extraction and Soxhlet extraction, are often time-consuming and require large amounts of organic solvents. Therefore, one of the objectives of analytical food safety studies currently has been the development of new extraction techniques that can improve the accuracy and precision of analytical results and simplify the analytical procedure.

Equation 1.png

Gaussian peak shapes in chromatography are indicative of a well-behaved system. Such peak shapes are highly desirable from the perspective of column packing technology. From an analyst’s point of view, Gaussian peaks provide improved sensitivity (lower detection limits) and allow ease of quantitation. In practice, one can obtain peaks that tail, front, or concurrently front and tail for reasons such as column packing issues, chemical and kinetic effects, and suboptimal high performance liquid chromatography (HPLC) system plumbing and detector settings. Here, we discuss a number of approaches for peak shape measurement that are available in modern chromatography software, along with their advantages and drawbacks. A new “total peak shape analysis” approach is suggested that facilitates detection and quantification of concurrent fronting and tailing in peaks. Several remediation approaches are proposed that can help chromatographers analyze and improve peak shapes.

figure 11515677433642.png

Ephedra alkaloids are phenethylamines that occur naturally in plants, including the herb Ma Huang used in traditional Chinese medicine. Ephedra alkaloids are potent CNS stimulants and also have a sympathomimetic effect on the peripheral nervous system. The aim of this study was to develop a multi-analyte procedure for the extraction, cleanup, and quantification of the ephedra alkaloids in functional foods and natural products. High capacity strong cation-exchange SPE cartridges were used for the isolation of ephedrine, pseudoephedrine, norephedrine, norpsuedoephedrine, methylephedrine, and synephrine from dietary supplements.

Ron-Majors_web.jpg

LCGC, the leading resource for separation scientists, is proud to announce that Ronald E. Majors and Zachary S. Breitbach are the winners of the 11th annual LCGC Lifetime Achievement and Emerging Leader in Chromatography Awards, respectively. Majors and Breitbach will be honored in a symposium as part of the technical program at the Pittcon 2018 conference in Orlando, Florida, on February 26, 2018.

The LCGC Europe/HTC-15 Innovation Award was launched to celebrate the work of scientists who are innovatively evolving the field of hyphenated techniques. The winner of the award will present their research at the HTC-15 conference, which will be held in Cardiff at the Cardiff City Hall from 24–26 January 2018. The winner will receive a plaque and a 1000 Euro travel grant award and free registration to the conference and social programme.

Gerstel 10.17  922_beschnitten_1.jpg

Gerstel GmbH & Co. KG celebrated its 50th anniversary this year and to mark the occasion hosted a gala event open to its staff and partners from across the globe.

I hear the words “struggling for sensitivity” so often when speaking to folks using LC–MS for bioanalysis, environmental analysis, metabolomics, proteomics, and a host of other applications where target analytes are present at low concentrations in complex matrices. We spend fortunes on MS/MS instruments to increase specificity of detection in order to improve sensitivity. Some of us go to great lengths to optimize sample extraction and HPLC conditions in order to minimize matrix suppression effects and improve specificity and hence sensitivity.

figure 1 L1510320286537.png

Fast gas chromatography (GC) has received new attention recently in the form of available enhanced instrument capabilities. This instalment reviews important characteristics and requirements of fast GC: What can fast GC do for separations, and how can laboratories take advantage of enhanced separation speeds?