GC–MS

Latest News


sample preparation visual

QuEChERS has been updated to suit modern instrumentation. Now also “efficient and robust,” QuEChERSER is a “mega-method” that covers a wider polarity range.

In this month’s blog, we provide information about the Subdivision on Chromatography and Separations Chemistry (SCSC) of the Analytical Division of the American Chemical Society (ACS), sharing our main goals and introducing our newly appointed executive board members.

In 2015, the American Chemical Society’s Committee on Professional Training added a requirement to the ACS degree certification program that undergraduates learn about macromolecules, supramolecular aggregates, and nanomaterials (MSN). This requirement can be met by a specialized course in these topics, but many programs are also choosing the distribute these topics across the curriculum.

Decomposing animal tissue releases volatile organic compounds (VOCs), of interest in forensic science. We describe the use of GC×GC–qMS/FID retrofitted with a reverse fill/flush (RFF) flow modulator for analyzing these VOCs in a tropical climate.

This article looks at the benefits of combining dynamic headspace sampling (DHS) with capillary GC–TOF-MS as a tool for untargeted analysis of aroma compounds in food and beverages. Applications for the analysis of strawberry yoghurt, chocolate, and red wine are described.

A supported liquid extraction (SLE) and fast gas chromatography–tandem mass spectroscopy (GC–MS/MS) method, used in multiple reaction monitoring (MRM) mode, was developed for the analysis of semivolatile organic compounds (SVOCs) in environmental samples, according to the updated EPA Methods 625.1 and 8270E. This method requires minimal sample handling and yields significant throughput and productivity gains in the laboratory.

A comprehensive monitoring protocol has been developed using GC–MS/ECD in selective ion monitoring (SIM) mode, with injection performed by solid-phase microextraction (SPME) and headspace (HS). This single system has been configured to analyze for all taste and odor (T&O) compounds in Standard Method 2170, with minimal changing of columns, injectors, or SPME fibers between methods.

In the present research, similar chromatography fingerprints were obtained using finely-tuned cryogenic-modulation (CM) and flow-modulation (FM) comprehensive two-dimensional gas chromatography–mass spectrometry (GC×GC–MS) experimental conditions.

Biomarker studies using exhaled breath are rapidly emerging as a technique for early disease detection and precision medicine. By offering a completely non-invasive experience for patients as an alternative to painful biopsy procedures. A new approach has the potential to enhance patient compliance, while making clinical workflows simpler. Exhaled breath analysis, however, requires a highly sensitive analytical technique capable of accurately measuring the broad range of volatiles present in breath. In this article, we present a proof-of-concept study to demonstrate a reliable and sensitive method to detect analytes in breath samples. Using high‑resolution accurate mass (HRAM) mass spectrometry (MS), the method validates how low- and high-abundance biomarkers can be quantified from exhaled breath.

In gas chromatography, heating the sample in the inlet can lead to sample losses and loss of quantitative reproducibility, but these problems can be avoided using cold sample introduction. This article describes various types of cold injection and how they can benefit the analyst.

Dioxin Analysis.jpg

PCDDs, PCDFs, and PCBs are toxic compounds categorized as POPs and are ubiquitous throughout the world. Detecting trace levels of PCDD and PCDF is important to monitor food supplies and to ensure industrial emissions meet regulatory standards. In line with the ongoing innovation in dioxin analysis technology, the US EPA is currently evaluating a new method-APGC–MS/MS-for PCDD and PCDF confirmatory analysis. Joe Romano and Douglas Stevens from Waters Corporation discuss the benefits of this new method.

Ear.jpg

The Column spoke to Nelson Roberto Antoniosi Filho, a professor at the Chemistry Institute of the Federal University of Goiás (UFG), in Goiânia, Brazil, about his development of a gas chromatography–mass spectrometry (GC–MS) method for cancer diagnosis using cerumen.